\qquad
ACIDS, BASES, AND SALTS

Date

Period

Intiterpretinig ${ }^{2} \mathrm{H}$

The term " pH " means \boldsymbol{p} ower of $\boldsymbol{h} y$ drogen. It refers to hydrogen released by acids when they ionize to form hydronium ions.

$$
\text { Example: } \mathrm{HCl}(g)+\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow \mathrm{Cl}^{-}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q)
$$

The more hydrogen a substance releases, the more hydronium it forms, and the stronger an acid it is. Substances that form the most hydronium ions have the
 water, the hydroxide ion concentration $\left[\mathrm{OH}^{-}\right]$is also $10^{-7} \mathrm{M}$, because the concentration of hydroxide and hydronium are equal. $\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$.

Remember, as $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$increases, $\left[\mathrm{OH}^{-}\right]$decreases. The product of the two is constant. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}$. When the concentration of each is $10^{-7} \mathrm{M}$, this is so because $10^{-7} \times 10^{-7}=10^{-14}$. If $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$increases from $10^{-7} \mathrm{M}$ to $10^{-6} \mathrm{M}$, then $\left[\mathrm{OH}^{-}\right]$ must decrease from $10^{-7} \mathrm{M}$ to $10^{-8} \mathrm{M}$ so, again, the product is $10^{-14} \cdot\left(10^{-6} \times 10^{-8}=10^{-14}\right)$ Notice the negative sum of the exponents is always 14 . If $\left[\mathrm{OH}^{-}\right]=10^{-4} \mathrm{M}$, then $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-10} \mathrm{M}$, and the pH is 10 .

Answer the questions below based on the reading above and on your knowledge of mathematics and chemistry.

1. Which is a higher concentration, $10^{-9} \mathrm{M}$ or $10^{-8} \mathrm{M}$? Explain. \qquad
2. What is the pH in each of the following cases:
a. $\quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-12} \mathrm{M}$? \qquad d. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-5} \mathrm{M}$? \qquad
b. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-2} \mathrm{M}$? \qquad e. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-14} \mathrm{M}$? \qquad
c. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-7} \mathrm{M}$? \qquad f. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-3} \mathrm{M}$? \qquad
g. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-6} \mathrm{M}$? \qquad
h. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-9} \mathrm{M}$? \qquad
i. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-13} \mathrm{M}$? \qquad
3. What is the concentration of hydronium in each of the following cases:
a. $\quad\left[\mathrm{OH}^{-}\right]=10^{-12} \mathrm{M}$? \qquad d. $\left[\mathrm{OH}^{-}\right]=10^{-5} \mathrm{M}$? \qquad
b. $\left[\mathrm{OH}^{-}\right]=10^{-2} \mathrm{M}$? \qquad e. $\left[\mathrm{OH}^{-}\right]=10^{-14} \mathrm{M}$? \qquad
c. $\left[\mathrm{OH}^{-}\right]=10^{-7} \mathrm{M}$? \qquad f. $\left[\mathrm{OH}^{-}\right]=10^{-3} \mathrm{M}$? \qquad
g. $\left[\mathrm{OH}^{-}\right]=10^{-6} \mathrm{M}$? \qquad
h. $\left[\mathrm{OH}^{-}\right]=10^{-9} \mathrm{M}$? \qquad
i. $\quad\left[\mathrm{OH}^{-}\right]=10^{-13} \mathrm{M}$? \qquad
4. What is the pH in each of the following cases:
a. $\left[\mathrm{OH}^{-}\right]=10^{-12} \mathrm{M}$? \qquad d. $\left[\mathrm{OH}^{-}\right]=10^{-5} \mathrm{M}$? \qquad
b. $\left[\mathrm{OH}^{-}\right]=10^{-2} \mathrm{M}$? \qquad e. $\left[\mathrm{OH}^{-}\right]=10^{-14} \mathrm{M}$? \qquad
c. $\left[\mathrm{OH}^{-}\right]=10^{-7} \mathrm{M}$? \qquad f. $\left[\mathrm{OH}^{-}\right]=10^{-3} \mathrm{M}$? \qquad
g. $\left[\mathrm{OH}^{-}\right]=10^{-6} \mathrm{M}$? \qquad
h. $\left[\mathrm{OH}^{-}\right]=10^{-9} \mathrm{M}$? \qquad
i. $\quad\left[\mathrm{OH}^{-}\right]=10^{-13} \mathrm{M}$? \qquad
© Evan P. Silberstein, 2003
