\qquad

Acids have regular chemical names, just like other compounds. $\mathrm{HCl}(g)$ is hydrogen chloride. Mix it with water to form $\mathrm{HCl}(a q)$ and you have hydrochloric acid. The rules for naming acids are different from the rules for naming other compounds, All binary acids (hydrogen and one

Hi! I'm hydrogen chloride

Hi! I'm hydrochloric acid other element) have the prefix HYDRO and suffix IC. HF is hydrofluoric acid. Oxyacids are most easily named based on the names of their polyatomic ions from Table E. The chart below shows how the name of the ion relates to the name of the acid.

oxidation state	polyatomic ion			acid name	
	example	prefix	suffix	prefix	suffix
two less than most common	ClO^{-1}	hypo	ite	hypo	ous
one less than most common	$\mathrm{ClO}_{2}{ }^{-1}$	-	ite	-	ous
most common	$\mathrm{ClO}_{3}{ }^{-1}$	-	ate	-	ic
one more than most common	$\mathrm{ClO}_{4}{ }^{-1}$	hyper	ate	per	ic

The prefixes and suffixes are added to the root (fluor for fluorine, sufur for sulfur, nitr for nitrogen, etc.) HNO_{2} is normally hydrogen nitrite. Mix it with water to form $\mathrm{HNO}_{2}(\mathrm{aq})$ and you get nitrous acid. Nitrous because the regular chemical name of the ion is nitrite.

Name the acids below, following the directions above:

1. $\mathrm{H}_{2} \mathrm{SO}_{4}(a q)$
2. $\operatorname{HBr}(a q)$
3. $\mathrm{HCH}_{3} \mathrm{COO}(a q)$ \qquad
4. $\mathrm{H}_{3} \mathrm{PO}_{4}(a q)$
5. $\mathrm{H}_{2} \mathrm{~S}(a q)$
6. $\mathrm{HCl}(a q)$
7. $\mathrm{HClO}(a q)$ \qquad
8. $\mathrm{HClO}_{4}(a q)$ \qquad
9. $\mathrm{H}_{2} \mathrm{SO}_{3}(a q)$ \qquad
10. $\mathrm{HI}(a q)$
11. $\mathrm{H}_{2} \mathrm{SO}_{4}(a q)$
12. $\mathrm{H}_{2} \mathrm{CrO}_{4}(\mathrm{aq})$
13. $\mathrm{HMnO}_{4}(a q)$
14. $\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})$
15. $\mathrm{HF}(a q)$
16. $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(a q)$
17. $\mathrm{HNO}_{3}(a q)$
18. $\mathrm{HClO}_{2}(a q)$
