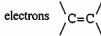
Name	
Data	Daniad

Nature of Carbon and Hydrocarbons

Aim

· to describe bonding in carbon and the type of compounds it typically forms

Notes


Nature of Carbon

- ★ Family Group group 14
 - Metalloid can bond with metals and nonmetals
 - ☆ Most active member of family
 - ☆ Electron configuration
 - * 4 valence electrons
 - * can bond with up to four elements at once
- **★** Bonding
 - forms compounds by covalent bonding
 - * single bond one shared pair of

* forms a regular tetrahedron (3

★ double bond - two shared pairs of

★ triple bond - three shared pairs of electrons -C≡C-

- forms bonds with other elements or with other carbons
- can form chains of carbon of unlimited length
 - * chains can be straight
 - * chains can be branched
 - * chains can be closed to form rings
- ★ The variety and complexity of carbon compounds is unlimited

Characteristics of organic compounds

- ★ Formed as a result almost exclusively of covalent bonding
- ★ Generally nonpolar
- * Generally insoluble in water
 - usually soluble in nonpolar solvents (other organic compounds)
- Nonelectrolytes except organic acids which are weak electrolytes

- ★ Have low melting points (due to weak intermolecular forces that hold them together)
- ★ Have slower reaction rates than inorganic compounds
 - covalent bonds within organic molecules are strong
 - activation energies are high
 - catalysts are often used to increase reaction rates

Hydrocarbons

109.5°

- ★ Definition compounds composed of only hydrogen and carbon
- ★ Homologous series group of organic compounds with similar properties and related structures (differ from each other by CH₂)
 - Aliphatic hydrocarbon chains
 - ★ Saturated
 - Definition has no bonds that can be broken to add extra hydrogens
 - alled Alkanes
 - family of hydrocarbons with all single bonds
 - general formula C_nH_{2n+1}
 - named with suffix "ANE"
 - ★ Unsaturated has double or triple bonds that can be broken to add more hydrogens

★ Alkenes

- family of hydrocarbons with one double bond
- general formula C_nH2_n
- named with suffix "ENE"

★ Alkynes

- family of hydrocarbons with one triple bond
- general formula C_nH_{2n-2}
- · named with suffix "YNE"

Answer the questions below by circling the number of the correct response

- Which formula may represent an unsaturated hydrocarbon? (1) C₂H₆ (2) C₃H₆ (3) C₄H₁₀ (4) C₅H₁₂
- In an homologous series, the second member has the formula C₃H₆. What is the formula of the fourth member of this series.
 (1) C₄H₈ (2) C₄H₁₀ (3) C₅H₁₀ (4) C₅H₁₂
- As the molecular mass of the compounds of the alkane series increases, their boiling point (1) decreases (2) increases (3) remains the same
- Which represents an unsaturated hydrocarbon? (1) C₂H₄
 C₂H₆ (3) C₃H₈ (4) C₄H₁₀
- 5. Which is a saturated hydrocarbon? (1) C₃H₈ (2) C₆H₆ (3) C₂H₅OH (4) C₂H₄O₂
- Which compound is a hydrocarbon? (1) R-CH₃ (2) R-OH (3) R-COOH (4) R-CI
- Which molecule contains a triple covalent bond? (1) C₂H₂
 C₂H₄ (3) C₃H₆ (4) C₃H₈
- Which compound is a member of the alkane series? (1) C₂H₆
 C₃H₆ (3) C₄H₆ (4) C₆H₆
- 9. The general formula for the alkyne series is (1) C_nH_n (2) C_nH_{n-2} (3) C_nH_{2n} (4) C_nH_{2n-2}
- 10. Which is the formula of a saturated hydrocarbon? (1) C_2H_2 (2) C_2H_4 (3) C_5H_8 (4) C_5H_{12}
- Which formula represents an unsaturated hydrocarbon?
 C₃H₈ (2) C₃H₇Cl (3) C₃H₆ (4) CCl₄

- The compound CH₃CH₂CH₂CH₃ belongs to the series that has the general formula (1) C_nH_{2n-2}, (2) C_nH_{2n+2}, (3) C_nH_{n-6}, (4) C_nH_{n+6}
- Which molecule contains a triple covalent bond between adjacent carbon atoms? (1) C₂H₄ (2) C₂H₂ (3) C₃H₆ (4) C₃H₈
- Each member of the alkane series differs from the preceding member by one additional carbon atom and (1) 1 hydrogen atom (2) 2 hydrogen atoms (3) 3 hydrogen atoms (4) 4 hydrogen atoms
- Which formula represents a saturated hydrocarbon?
 C₂H₂ (2) C₂H₄ (3) C₃H₆ (4) C₃H₈
- Which formula represents a hydrocarbon with a double covalent bond? (1) CH₃Cl (2) C₂H₃Cl (3) C₂H₂ (4) C₂H₄
- Organic compounds differ from inorganic compounds in that
 organic compounds generally have (1) high melting points and
 are electrolytes, (2) high melting points and are nonelectrolytes,
 (3) low melting points and are electrolytes,
 (4) low melting points
 and are nonelectrolytes
- The compound C₂H₂ belongs to the series of hydrocarbons with the general formula (1) C_nH_n (2) C_{2n}H_{2n} (3) C_nH_{2n-2} (4) C_{2n}H_{2n-2}
- Which normal alkane has the highest boiling point at 1 atmosphere? (1) C₂H₄ (2) C₃H₆ (3) C₄H₈ (4) C₅H₁₀
- Which element is composed of atoms that can form more than one covalent bond with each other? (1) hydrogen (2) helium (3) carbon (4) calcium

Chemistry	: '	Form	Ls1	1.	2 A
~ v(*).480 O 1 -l				. 🗕 .	45

ORGANIC CHEMISTRY

Name		
Date	Perio	d

Structural Formulas and Isomers

Ain

• to interpret organic formulas

Notes

Types of formulas

tormulas			
Type of Compound	Simple formula	Structural formula	Graphic formula
	CH₄	H—————————————————————————————————————	CH₄
Alkanes	C_2H_6	H—————————————————————————————————————	Сн,сн,
	C ₃ H ₈	N	CH₃CH₂CH₃
	C₂H₄	H_c=c_H	CH ₂ CH ₂
Alkenes	C ₃ H ₆		СН₂СНСН₃
	C₄H ₈		CH₂CHCH₂CH₃
	C₂H₂	нс===сн	СНСН
Alkynes	C ₃ H ₄	H	СНССН3
	C₄H ₆	H	СНССН₂СН₃

Isomers - compounds with the same simple formula but different structures

- structures must actually be different (looking different on paper is not always enough)
- branches of different isomers are attached on non-equivalent carbons

ORGANIC CHEMISTRY

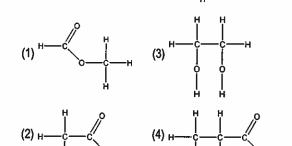
Answer the questions below by circling the number of the correct response

- The compounds CH₃CH₂OCH₂CH₃ and CH₃CH₂CH₂CH₂OH are (1) hydrocarbons (2) isomers (3) allotropes (4) carbohydrates
- The compound C₄H₉OH is an isomer of (1) C₃H₇COCH₃
 CH₃COOC₂H₅ (3) C₂H₅OC₂H₅ (4) CH₃COOH
- 3. If a compound has a molecular formula of CH₂O₂, then its structural formula must be

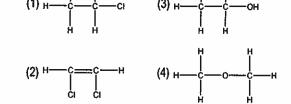
(2) c (4)

4. The structural formulas

H H H H


H—c=c—c—c—H and H—c=c—c—c—h

represent melocules which both are (4) below a different


represent molecules which both are (1) halogen addition products (2) unsaturated hydrocarbons (3) members of alkynes (4) isomers of butane

- Compounds which have the same molecular formula but different molecular structures are called (1) isomers (2) allotropes (3) isotopes (4) homologs
- Which compound is an isomer of CH₃CH₂OH? (1) CH₃CHO
 CH₃COCH₃ (3) CH₃OCH₃ (4) CH₃CH₂COOH
- Which compound is an isomer of CH₃COOCH₃? (1) CH₃OCH₃
 CH₃COCH₃ (3) CH₃CH₂COOH (4) CH₃CH₂CH₂OH
- Which compound is an isomer of CH₃COOH? (1) HCOOCH₃
 CH₃CH₂COOH (3)CH₃CH₂OH (4) CH₃COOCH₃

9. Which is the correct structural formula of a compound whose molecular formula is CH₄O?

11. Which is the structural formula for an unsaturated compound?

Date _____ Period ____

Naming Hydrocarbons and Substituted Hydrocarbons

Aim

· to apply the IUPAC rules for naming organic compounds

Notes

Naming hydrocarbons

- ★ family: alkane, alkene, or alkyne use suffix ANE, ENE, or YNE
- ★ Length of chain, length of side chain, number of side chains or functional groups, location of side chains or functional groups use prefixes

Number	Prefix			
	Carbons in Main Chain	Carbons in side chain	Number of side chains or groups	Location of side chains or groups
1	meth	methyl	ļ	1
2	eth	ethyl	di	2
3	prop	propyl	tri	3
4	but	butyl	tetra	4
5	pent	pentyl	penta	5
6	hex	hexyl	hexa	6
7	hept	heptyl	hepta	7
8	oct	octyl	octa	8
9	non	nonyi	nona	9
10	dec	decyl	deca	10

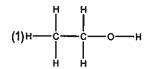
Substituted hydrocarbons

- ★ Halogenated hydrocarbons prefix in name
 - fluorine = fluoro; chlorine = chloro; bromine = bromo; iodine = iodo

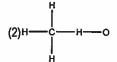
example: C

CH₃CH₂CHClCH₂CH₃ (3-chlorobutane)

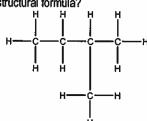
- ★ Alcohois
 - ☆ general formula: R-OH
 - ध suffix: ol
 - monohydroxy alcohols: one -OH
 - ★ primary alcohols: the -OH is attached to one end of a hydrocarbon chain
 - ★ general formula: R-CH₂OH
 - ★ example: CH₃CH₂CH₂OH (propanol)
 - ★ secondary alcohols: the OH is attached to a carbon that is attached to two other carbons
 - oH ★ general formula: R-C-H
 - * example: CH₃CHOHCH₃ (2-propanol)
 - ★ tertiary alcohols: the OH is attached to a carbon that is attached to three other carbons
 - OH ★ general formula: R-C-R
 - ★ example: CH₃CH₃COHCH₃ (tertiary butanol or 2 methyl-2 propanol)


- ★ important monohydroxy alcohols
 - * ethanol beverage alcohol
 - ★ 2-propanol rubbing alcohol
- ☆ dihydroxy alcohols (glycols): with two -OH groups
 - ★ example: ethylene glycol or 1,2 ethanediol (active ingredient in antifreeze)

- rihydroxy (trihydric) alcohols: with three -OH groups
 - * example: glycerol or 1,2,3 propanetriol (product of digestion of fat)


- * Aldehydes produced by oxidation of primary alcohols
 - $2CH_3OH + O_2 \rightarrow 2H-CHO + 2H_2O$
 - ☆ general formula: R-CHO
 - suffix: al
 - ☆ example: CH₃CH₂CHO (propanal)
 - important aldehydes: methanal formaldehyde
- ★ Ketones produced by the oxidation of secondary alcohols
 - ☆ general formula: RCOR
 - ☆ suffix: one
 - ☆ example: CH₃COCH₃ (propanone)
 - ☆ important ketones: propanone (acetone, dimethyl ketone)
- ★ Acids
 - ☆ general formula: RCOOH
 - ☆ suffix: oic acid
 - ☆ example: CH₃CH₂COOH (propanoic acid)
 - important acids: ethanoic acid-acetic acid (vinegar)
- ★ Ethers produced by dehydration synthesis of two primary alcohols [R-OH + HO-R → R-O-R + H₂O]
 - ☆ general formula: R-O-R
 - \triangle example: diethyl ether (C₂H₅OC₂H₅) or ethoxyethane
 - * use: anesthetic and solvent
- ★ Esters R-COOR (fragrances)
 - ☆ example: CH₃COOCH₃ methyl methanoate
- * Amines derivatives of ammonia
- ★ Amino acids R-C(NH₂)COOH
- * Amides dehydration synthesis of amino acids

Answer the questions below by circling the number of the correct response


1. Which is the correct structural formula for methanol?

What is the correct I.U.C. name of the compound represented by the following structural formula?

- (1) n-pentane
- (3) 2-methylbutane
- (2) isobutane
- (4) n-butane
- 3. Which is an isomer of 2,2-dimethylpropane?
 - (1) ethane
- (3) n-pentane
- (2) propane
- (4) n-butane
- 4. Which molecule contains four carbon atoms?
 - (1) ethane
- (3) methane
- (2) butane
- (4) propane
- 5. The general formula of organic acids can be represented as

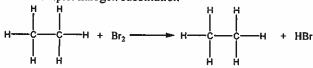
- 6. How many carbon atoms are contained in an ethyl group?
- (3) 3
- (2) 2

- 7. Which is an isomer of 2-chloropropane?
 - (1) butane
- (3) 1-chlorobutane
- (3) propane
- (4) 1-chloropropane
- 8. Which is an ester? (1) CH₃OH (2) CH₃COOH (3) CH₃OCH₃
 - (4) CH₃COOCH₃
- 9. The compound CH3CH2COOCH3 is an example of
 - (1) an ester
- (3) an acid
- (2) an alcohol
- (4) a polymer
- 10. The formula of methanoic acid is
 - (1) HCHO (2) HCOOH
- (3) CH₃OH (4) HCŎOCH₃
- 11. Which is the formula for ethanoic acid?
- (1) CH₃COOH (2) CH₃CH₂OH
- (3) CH₃CH₂COOH (4) CH3CH2CH2OH
- 12. The compound CH3COOCH3 is classified as
 - (1) an acid
- (3) an ester
- (2) an alcohol
- (4) a hydrocarbon
- 13. Which formula represents an organic acid?
 - (1) CH₃COOH
- (3) CH3OCH3
- (2) CH₃OH
- (4) CH3COOCH3
- 14. The compound methanal, HCHO, is an example of an
 - (1) ether
- (3) alcohol
- (2) aldehyde
- (4) acid
- 15. What could be the name of a compound that has the general formula R-OH?
 - (1) methanol
- (3) methyl methanoate
- (2) methane
- (4) methanoic acid
- 16. Which organic compound is a ketone?
 - (1) CH₃OH
- (3) CH₃COOH
- (2) CH3COCH3
- (4) CH₃COOCH₃

Name _____

Period

Örganic Rocactions


Aim

• to describe common reactions of organic compounds

Notes

Some reactions of hydrocarbons

- ★ Combustion burning
 - ☆ with sufficient oxygen → CO₂ and water
 - \star example: $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$
 - with insufficient oxygen → CO and water
 - * example: $2C_3H_8 + 7O_2 \rightarrow 6CO + 8H_2O$
- Substitution replacement of hydrogen in saturated hydrocarbons
 - ☆ example: halogen substitution

eth

ane + bromine → monobromoethane + hydrogen bromide

★ Addition

- ☼ Definition = Adding two or more atoms to carbon at a point of unsaturation
- ☆ Characteristics
 - * take place more easily than substitutions
 - ★ unsaturated bonds are more reactive than saturated bonds and alkynes are more reactive than alkenes
 - * results in the formation of a single product

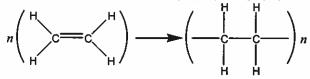
☆ Examples

* halogenation - occurs at room temperature

☆ Hydrogenation

★ Definition - addition of hydrogen to an alkene or an alkyne (or other carbon compounds with double or triple bonds)

★ Fermentation - enzymatic breakdown of organic molecules during anaerobic respiration


$$C_6H_{12}O_6 \xrightarrow{\text{symase}} 2C_2H_5OH + 2CO_2$$

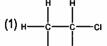
glucose \rightarrow ethanol + carbon dioxide

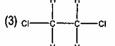
- * Esterification formation of esters
 - ☆ General formula: RCOOR
 - ☆ Formation: ROH + RCOOH → RCOOR + H₂O
 - ☆ importance:

Date

- ★ fruit flavorings and aromas
- lipids are formed by esterification of glycerol by fatty acids
- * Saponification hydrolysis of fats by bases
 - roduces organic salts called soaps
 - forms glycerol as a byproduct
- ★ Polymerization formation of large molecules from repeating units of smaller ones
 - Polymer large molecule formed from many smaller, repeating units or monomers
 - ☆ Condensation joining monomers by dehydration synthesis

- condensation polymers must have at least two functional groups
- the process can be repeated to form long chain polymers
- examples: silicones, polyesters, polyamides, phenolic plastics, and nylons
- Addition polymerization involves opening up double and triple bonds of unsaturated hydrocarbons
 - * examples: vinyl plastics polyethylene, polystyrene


ethylene monomer


polyethylene

Answer the questions below by circling the number of the correct response

- 1. One of the products produced by the reaction between CH3COOH and CH3OH is
 - (1) HOH
- (3) HCOOH
- (2) H₂SO₄
- (4) CH3CH2OH
- 2. A fermentation reaction and a sponification reaction are similar in that they both can produce
 - (1) an ester
- (3) an acid
- (2) an alcohol
- (4) a soap
- 3. The product of a reaction between a hydrocarbon and chlorine was 1,2-dichloropropane. The hydrocarbon must have been
 - (1) C₅H₁₀
- $(3) C_3H_6$
- (2) C₂H₄
- (4) C₄H₈
- 4. The product of a reaction between a hydrocarbon and chlorine was 1,2-dichloropropane. The hydrocarbon must have been
 - (1) C₅H₁₀
- $(3) C_3H_6$
- (2) C₂H₄
- $(4) C_4 H_8$
- The reaction C₃H₆ + H₂ → C₃H₈ is an example of
 - (1) substitution
- (3) polymerization
- (2) addition
- (4) esterification
- 6. The reaction C₂H₄ + H₂ → C₂H₆ is an example of (1) addition (3) saponification
- (2) substitution
- (4) esterification
- 7. A reaction between an acid and an alcohol produces an ester and
 - carbon dioxide
- (3) glycerol (4) ethanol
- (2) water
- 8. The fermentation of C₆H₁₂O₆ will produce carbon dioxide and
 - (1) a polymer
- (3) an ester (4) an alcohol
- (2) a soap
- 9. The reaction: C₄H₈ + Cl₂ → C₄H₈Cl₂ is an example of
 - (1) substitution
- (3) polymerization
- (2) addition
- (4) fermentation
- 10. A reaction between CH3COOH and an alcohol produced water and an ester CH3COOČH3. Which alcohol was used in the reaction?
 - (1) CH₃OH
- (3) C₃H₇OH
- (2) C₂H₅OH
- (4) C4H9OH
- 11. The hydrolysis of fat by a base is called
 - (1) saponification
- (3) polymerization
- (2) esterification
- (4) neutralization

12. Which is the product of the reaction between ethene and chlorine?

- 13. Which equation represents an esterification reaction?

 - (1) $C_6H_{12}O_6 \rightarrow 2C_2H_5OH + CO_2$ (2) $C_5H_{10} + H_2 \rightarrow C_5H_{12}$ (3) $C_3H_8 + CI_2 \rightarrow C_3H_7CI + HCI$ (4) $HCOOH + CH_3OH \rightarrow HCOOCH_3 + HOH$
- 14. In a condensation polymerization, a product always formed is
 - (1) water
- (3) oxygen
- (2) hydrogen
- (4) carbon dioxide
- 15. The organic reaction,

HCOOH + CH3CH2CH2CH2OH → HCOOCH2CH2CH2CH3 + HOH,

- is an example of (1) fermentation
 - (3) polymerization
- (2) esterification
- (4) saponification
- 16. Which compound will undergo a substitution reaction with chlorine?
 - $(1) CH_4$
- $(3) C_3H_6$
- $(2) C_2H_4$
- (4) C4H8
- 17. The reaction represented by the equation $nC_2H_4 \rightarrow (-C_2H_4-)_n$ is
 - (1) saponification
- (3) esterification
- (2) fermentation
- (4) polymerization
- Which organic reaction involves the bonding of monomers by a dehydration process?
 - (1) substitution
- (3) addition polymerization
- (2) oxidation
- (4) condensation polymerization
- 19. The reaction CH₃OH + HCOOH → HCOOCH₃ + H₂O is an example of
 - (1) hydrogenation
- esterification
- (2) polymerization
- (4) addition
- 20. The reaction C₄H₁₀ + Br₂ → C₄H₉Br + HBr is an example of
 - (1) substitution
- (3) fermentation
- (2) addition
- (4) polymerization