Chemistry 106: General Chemistry ## Syracuse University Project Advance Fall 2014 Exam #1 | Name | Date | |------|--| | (1) | Which one of the following is an extensive property? | | | (a) density (b) mass (c) boiling point (d) freezing point (e) all are extensive properties | | (2) | Platinum has a density of 21.4 g/cm ³ . What is the mass of 5.9 cm ³ of this metal? (express correctly the number of significant figures in your answer) | | | (a) 0.276 g (b) 1.3 x 10² g (c) 126. g (d) 3.6 g (e) 3.63 g | | (2) | | | (3) | The number of significant figures in the mass measured as 0.05010 is (a) 1 (b) 2 (c) 3 (d) 4 (e) 5 | | | | | (4) | A solution is a | | | (a) pure mixture (b) heterogeneous mixture (c) pure element (d) homogeneous mixture (e) pure compound | - (5) The melting point and the normal boiling point of water can be used to calibrate thermometers. What are these respective temperatures in Kelvin degrees? - (a) 32 and 212 - (b) 0 and 100 - (c) 100 and 273 - (d) 0 and 373 - (e) 273 and 373 - (6) Which of the statements I-V is (are) <u>correct</u>? - I. Barium Nitrate is $Ba(NO_3)_2$ - II. Calcium carbonate is CaCO₃ - III. Sodium perchlorate is NaClO₄ - IV. Lithium carbonate is Li₂CO₃ - V. KNO₃ is potassium nitrate - (a) all are correct - (b) all except IV - (c) II and IV only - (d) I, II, and III only - (e) none is correct - (7) The species ¹₁H, ²₁H and ³₁H represent three - (a) allotropes - (b) homologs - (c) isomers - (d) isotopes - (e) members of an homologous series - (8) A sodium ion differs from a sodium atom in that the sodium ion - (a) is more reactive - (b) has fewer electrons - (c) is an isotope of sodium - (d) exists only in solution - (e) has a negative charge on the nucleus | (9) | When alpha particles were shot at a gold target, most of the particles were undeflected. This indicated to Rutherford that | |------|--| | | (a) the gold foil was continuous matter (b) the mass of the gold atoms was spread out thinly and the electron carried the negative charge (c) the atoms of gold were mostly empty space (d) the alpha particles had great penetrating power and the nucleus has a positive charge (e) the alpha particles had charges opposite to those on the gold nuclei | | (10) | and reside in the atomic nucleus | | | (a) protons, electrons (b) protons, neutrons (c) neutrons, electrons (d) none of these | | (11) | Which one of the following formulas is also an empirical formula? | | | (a) C ₆ H ₆ O ₂
(b) C ₂ H ₆ SO
(c) H ₂ O ₂
(d) H ₂ P ₄ O ₆
(e) C ₆ H ₆ | | (12) | Magnesium reacts with a certain element to form a compound with the general formula MgX. What would be the most likely formula for the compound formed between potassium and element X? | | | (a) K₂X (b) KX₂ (c) K₂X₃ (d) K₂X₂ (e) potassium and X cannot form a compound | | (13) | The species formed when a neutral atom loses an electron is called | | | (a) an anion.(b) a cation.(c) an isotope.(d) a charge mass ratio.(e) an isomer. | | (14) | What is the sum of the coefficients for the following chemical reaction when it is balanced? | | |--------|---|----| | | | | | (15) | The composition of oxalic acid is 26.7% carbon, 2.2% hydrogen and 71.1% oxygen, by mass. What is the empirical formula of oxalic acid? (a) CHO ₂ (b) CHO (c) C ₂ HO ₄ (d) C ₂ HO ₂ (e) none of the above | 7 | | (16) \ | Which combination represents a ⁵⁷ ₂₆ Fe ³⁺ ion? (a) 57p, 26n, 54e (b) 26p, 31n, 29e (c) 26p, 31m, 26e (d) 57p, 26n, 23e (e) 26p, 31n, 23e | | | (17) | A certain element has two naturally occurring isotopes. These isotopes have mass numbers of 63 and 65, and their fractional abundances are, respectively, 0.692 (69.2% and 0.308 (30.8%). What is the atomic weight (or atomic mass) of this element? (a) 58.7 (b) 63.1 (c) 63.6 (d) 64.4 (e) 65.4 | Ď) | (18) According to the following balanced reaction, how many moles of manganese(II) chloride can be produced when 1.83 g of HCl gas completely reacts with manganese(IV) oxide? $$MnO_2(s) + 4 HCl(aq) -----> Cl_2(g) + MnCl_2(g) + 2H_2O(l)$$ - (a) 0.0125 moles - (b) 1.577 moles - (c) 0.010 moles - (d) 0.00313 moles - (e) none of these - (19) How many aluminum atoms are there in 25 g of Al₂S₃? - (a) 1.0×10^{23} - (b) 2.0×10^{23} - (c) 4.5×10^{23} - (d) 4.0×10^{21} - (e) 6.0×10^{21} - (20) What is the percentage of mass of oxygen in vanillin, $C_8H_8O_3$, which is used as a flavoring? - (a) 27.3% - (b) 31.6% - (c) 45.8% - (d) 63.2% - (e) 68.4% - (21) A compound has an empirical formula of CH_2 and a molecular weight of 56.06 amu. Calculate the molecular formula of the compound: - (a) CH_2 - (b) C_3H_6 - (c) C_2H_4 - (d) C_5H_{10} - (e) C_4H_8 Questions (22) and (23). Consider the following reaction: $$4\mathrm{KO_2}(s) + 2\mathrm{H_2O}(l) \rightarrow 4\mathrm{KOH}(s) + 3\mathrm{O_2}(g)$$ The reaction vessel initially contains 0.25 mol KO₂ and 0.15 mol H₂O. - (22) Which is the limiting reactant? - (a) KO_2 - (b) H₂O - (c) KOH - (d) O_2 - (e) cannot be determined from the given data - (23) How many moles of O_2 can be produced? - (a) 0.22 mol - (b) 0.19 mol - (c) 0.25 mol - (d) 0.15 mol - (e) 0.39 mol - What is the molarity of sodium hydroxide (NaOH, molar mass = 40.01 g) solution made by dissolving 57.2 g of NaOH in 250 mL of water? - (a) 0.1092 M - (b) 2.80 M - (c) 14.3 M - (d) 6.99 M - (e) 5.72 M - When a 25.0 mL sample of HNO₃(aq) was titrated with 0.101 M NaOH(aq), the stoichiometric point was reached when 41.2 mL of the base had been added. What is the concentration of HNO₃(aq) in the sample? - (a) 0.166 M - (b) 0.00416 M - (c) 0.104 M - (d) 0.101 M - (e) 0.332 M - (26) The balanced net ionic equation for the precipitation of CaCO₃ when aqueous solutions of Li₂CO₃ and CaCl₂ are mixed is - (a) $2 \text{ Li}^{+}(aq) + \text{CO}_{3}^{2-}(aq)$ -----> $\text{Li}_{2}\text{CO}_{3}(aq)$ - (b) $2 \operatorname{Li}^{+}(aq) + 2 \operatorname{Cl}^{-}(aq) -----> 2 \operatorname{LiCl}(aq)$ - (c) Li⁺(aq) + Cl⁻(aq) -----> LiCl(aq) - (d) $Ca^{2+}(aq) + CO_3^{2-}(aq) -----> CaCO_3(s)$ - (e) $\text{Li}_2\text{CO}_3(\text{aq}) + \text{CaCl}_2(\text{aq}) \longrightarrow 2 \text{LiCl}(\text{aq}) + \text{CaCO}_3(\text{s})$ - What are the respective molar concentrations of Na⁺ and SO₄²⁻ afforded by dissolving 0.500 moles of Na₂SO₄ in water and diluting it to 1.33 L? - (a) 0.665 and 0.665 - (b) 0.665 and 1.33 - (c) 1.33 and 0.665 - (d) 3.76 and 7.52 - (e) 0.752 and 0.376 - EC) The combustion of 3.42 g of a compound known to contain only nitrogen and hydrogen was burned in oxygen. The result was the formation of 9.82 g of NO₂ and 3.85 g of water. Determine the empirical formula of this compound. SHOW ALL WORK - (a) NH - (b) NH₂ - (c) N_2H - (d) NH₃ - (e) N_2H_4 | TABLE 4.1 Solubility Gu | idelines for C | Common Ionic Compounds in Water | |-------------------------|--|---| | Soluble Ionic Compound | 3 | Important Exceptions | | Compounds containing | NO ₃ ⁻
C ₂ H ₃ O ₂ ⁻
Cl ⁻
Br ⁻
I ⁻
SO ₄ ²⁻ | None None Compounds of Ag ⁺ , Hg ₂ ²⁺ , and Pb ²⁺ Compounds of Ag ⁺ , Hg ₂ ²⁺ , and Pb ²⁺ Compounds of Ag ⁺ , Hg ₂ ²⁺ , and Pb ²⁺ Compounds of Sr ²⁺ , Ba ²⁺ , Hg ₂ ²⁺ , and Pb ²⁺ | | Insoluble Ionic Compoun | ds | Important Exceptions | | Compounds containing | S ²⁻
CO ₃ ²⁻ | Compounds of NH ₄ ⁺ , the alkali metal cations, and Ca ²⁺ , Sr ²⁺ , and Ba ²⁺ Compounds of NH ₄ ⁺ and the alkali metal cations | | | PO ₄ 3- | Compounds of NH ₄ ⁺ and the alkali metal cations | | | OH- | Compounds of the alkali metal cations, and Ca ²⁺ , Sr ²⁺ , and Ba ²⁺ | . | TABLE 4.5 A | ctivity Series of Metals in Aqueous Solution | |------------------------------|---| | Metal | Oxidation Reaction | | Lith ium
Potassium | $Li(s) \longrightarrow Li^{+}(aq) + e^{-}$ | | Barium | $K(s) \longrightarrow K^{+}(aq) + e^{-}$
$Ba(s) \longrightarrow Ba^{2+}(aq) + 2e^{-}$ | | Calcium | $Ca(s) \longrightarrow Ca^{2+}(aq) + 2e^{-}$ | | Sodium | $Na(s) \longrightarrow Na^{+}(aq) + e^{-}$ | | Magnesium
Aluminum | $Mg(s) \longrightarrow Mg^{2+}(aq) + 2e^{-}$
$Al(s) \longrightarrow Al^{3+}(aq) + 3e^{-}$ | | Manganese | $Mn(s) \longrightarrow Mr^{2+}(aq) + 3e$
$Mn(s) \longrightarrow Mn^{2+}(aq) + 2e^{-}$ | | Zinc | $Zn(s) \longrightarrow Zn^{2+}(aq) + 2e^{-}$ | | Chromium | $Cr(s) \longrightarrow Cr^{3+}(aq) + 3e^{-}$ | | Iron
Cobalt | $Fe(s) \longrightarrow Fe^{2+}(aq) + 2e^{-}$ $Co(s) \longrightarrow Co^{2+}(aq) + 2e^{-}$ | | Nickel | $Ni(s) \longrightarrow Ni^{2+}(aq) + 2e^{-}$ | | Tin | $Sn(s) \longrightarrow Sn^{2+}(aq) + 2e^{-}$ | | Lead
Modrogen | $Pb(s) \longrightarrow Pb^{2+}(aq) + 2e^{-}$ | | Copper | $\begin{array}{ccc} H_{2}(g) & \longrightarrow & 2H^{+}(aq) & + & 2e^{-} \\ Cu(s) & \longrightarrow & Cu^{2+}(aq) & + & 2e^{-} \end{array}$ | | Silver | $Ag(s) \longrightarrow Ag^{+}(aq) + e^{-}$ | | Mercury | $Hg(l) \longrightarrow Hg^{2+}(aq) + 2e^{-}$ | | Platinum
Gold | $\begin{array}{ccccc} \text{Pt}(s) & \longrightarrow & \text{Pt}^{2+}(aq) & + & 2e^{-} \\ \text{Au}(s) & \longrightarrow & \text{Au}^{3+}(aq) & + & 3e^{-} \end{array}$ | | COU | $Au(s) \longrightarrow Au^{-}(uq) + se$ | .. ## Periodic Table of the Elements | 2
He
4.0026 | 10
Ne
20.180 | 18
Ar
39.948 | 36
Kr
83.80 | 54
Xe
131.29 | 86
Rn
(222) | | |-------------------|--------------------|---|--------------------|----------------------------------|--------------------|----------------------| | | 9
FF
18.998 | 17
CI
35.453 | 35
Br
79.904 | 53
I
126.90 | 85
At
(210) | | | | 8
0
15.999 | 16
S
32.056 | 34
Se
78.96 | 52
Te
127.60 | 84
Po
(209) | | | | 7
N
14.007 | 15
P
30.974 | 33
As
74.922 | 51
Sb
121.76 | 83
Bi
208.98 | | | | 6
C
12.011 | 14
Si
28.086 | 32
Ge
72.61 | 50
Sn
118.71 | 82
Pb
207.2 | | | | 5
BB
10.81 | 13
A1
26.982 | 31
Ga
69.72 | 49
In
114.82 | 81
T1
204.38 | | | | | | 30
Zn
65.39 | 48
Cd
112.41 | 80
Hg
200.59 | | | | | | 29
Cu
63.546 | 47
Ag
107.87 | 79
Au
196.97 | | | | | A | 28
Ni
58.69 | 46
Pd
106.42 | 78
Pt
195.08 | | | | | 4 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / | 27
Co
58.933 | 45
Rh
102.91 | 77
Ir
192.22 | [109]
Mt
(268) | | | | | 26
Fe
55.847 | 44
Ru
101.07 | 76
Os
190.2 | [108]
Hs
(265) | | | | | 25
Mn
54.938 | 43
Tc
(98) | 75
Re
186.21 | [107]
Bh
(262) | | | | | 24
Cr
51.996 | 42
Mo
95.94 | 74
W
183.85 | 106
Sg
(263) | | | | | 23
V
50.942 | 41
Nb
92.906 | 73
Ta
180.95 | 105
Db
(262) | | | | | 22
Ti
47.88 | 40
Zr
91.224 | 72
Hf
178.49 | 104
Rf
(261) | | | | | 21
Sc
44.955 | 39
Y
88.906 | 57
La
138.91 | 89
Ac
227.03 | | | 4
Be
9.012 | 12
Mg
24.31 | 20
Ca
40.078 | 38
Sr
87.62 | 56
Ba
137.33 | 88
Ra
226.03 | | II
II.0079 | 3.
Li
6.941 | . 11
Na
22.990 | 19
K
39.098 | 37
Rb
85.468 | 55
Cs
132.91 | 87
Fr
(223) | | Lanthanide Series | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | |-------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-----------|--------|--------|--------| | | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | H0 | Er | Tm | Yb | Lu | | | 140.12 | 140.91 | 144.24 | (145) | 150.36 | 151.96 | 157.25 | 158.93 | 162.50 | 164.93 | 167.26 | 168.93 | 173.04 | 174.96 | | Actinide Series | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | | | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | ES | Fin | Md | No | Lr | | | 232.04 | 231.04 | 238.03 | 237.05 | (244) | (243) | (247) | (247) | (251) | (252) | (257) | (258) | (259) | (260) |