Chemistry 106: General Chemistry

Syracuse University Project Advance Fall 2014 Exam #1

Name	Date
(1)	Which one of the following is an extensive property?
	 (a) density (b) mass (c) boiling point (d) freezing point (e) all are extensive properties
(2)	Platinum has a density of 21.4 g/cm ³ . What is the mass of 5.9 cm ³ of this metal? (express correctly the number of significant figures in your answer)
	 (a) 0.276 g (b) 1.3 x 10² g (c) 126. g (d) 3.6 g (e) 3.63 g
(2)	
(3)	The number of significant figures in the mass measured as 0.05010 is (a) 1 (b) 2 (c) 3 (d) 4 (e) 5
(4)	A solution is a
	 (a) pure mixture (b) heterogeneous mixture (c) pure element (d) homogeneous mixture (e) pure compound

- (5) The melting point and the normal boiling point of water can be used to calibrate thermometers. What are these respective temperatures in Kelvin degrees?
 - (a) 32 and 212
 - (b) 0 and 100
 - (c) 100 and 273
 - (d) 0 and 373
 - (e) 273 and 373
- (6) Which of the statements I-V is (are) <u>correct</u>?
 - I. Barium Nitrate is $Ba(NO_3)_2$
 - II. Calcium carbonate is CaCO₃
 - III. Sodium perchlorate is NaClO₄
 - IV. Lithium carbonate is Li₂CO₃
 - V. KNO₃ is potassium nitrate
 - (a) all are correct
 - (b) all except IV
 - (c) II and IV only
 - (d) I, II, and III only
 - (e) none is correct
- (7) The species ¹₁H, ²₁H and ³₁H represent three
 - (a) allotropes
 - (b) homologs
 - (c) isomers
 - (d) isotopes
 - (e) members of an homologous series
- (8) A sodium ion differs from a sodium atom in that the sodium ion
 - (a) is more reactive
 - (b) has fewer electrons
 - (c) is an isotope of sodium
 - (d) exists only in solution
 - (e) has a negative charge on the nucleus

(9)	When alpha particles were shot at a gold target, most of the particles were undeflected. This indicated to Rutherford that
	 (a) the gold foil was continuous matter (b) the mass of the gold atoms was spread out thinly and the electron carried the negative charge (c) the atoms of gold were mostly empty space (d) the alpha particles had great penetrating power and the nucleus has a positive charge (e) the alpha particles had charges opposite to those on the gold nuclei
(10)	and reside in the atomic nucleus
	 (a) protons, electrons (b) protons, neutrons (c) neutrons, electrons (d) none of these
(11)	Which one of the following formulas is also an empirical formula?
	(a) C ₆ H ₆ O ₂ (b) C ₂ H ₆ SO (c) H ₂ O ₂ (d) H ₂ P ₄ O ₆ (e) C ₆ H ₆
(12)	Magnesium reacts with a certain element to form a compound with the general formula MgX. What would be the most likely formula for the compound formed between potassium and element X?
	 (a) K₂X (b) KX₂ (c) K₂X₃ (d) K₂X₂ (e) potassium and X cannot form a compound
(13)	The species formed when a neutral atom loses an electron is called
	(a) an anion.(b) a cation.(c) an isotope.(d) a charge mass ratio.(e) an isomer.

(14)	What is the sum of the coefficients for the following chemical reaction when it is balanced?	
(15)	The composition of oxalic acid is 26.7% carbon, 2.2% hydrogen and 71.1% oxygen, by mass. What is the empirical formula of oxalic acid? (a) CHO ₂ (b) CHO (c) C ₂ HO ₄ (d) C ₂ HO ₂ (e) none of the above	7
(16) \	Which combination represents a ⁵⁷ ₂₆ Fe ³⁺ ion? (a) 57p, 26n, 54e (b) 26p, 31n, 29e (c) 26p, 31m, 26e (d) 57p, 26n, 23e (e) 26p, 31n, 23e	
(17)	A certain element has two naturally occurring isotopes. These isotopes have mass numbers of 63 and 65, and their fractional abundances are, respectively, 0.692 (69.2% and 0.308 (30.8%). What is the atomic weight (or atomic mass) of this element? (a) 58.7 (b) 63.1 (c) 63.6 (d) 64.4 (e) 65.4	Ď)

(18) According to the following balanced reaction, how many moles of manganese(II) chloride can be produced when 1.83 g of HCl gas completely reacts with manganese(IV) oxide?

$$MnO_2(s) + 4 HCl(aq) -----> Cl_2(g) + MnCl_2(g) + 2H_2O(l)$$

- (a) 0.0125 moles
- (b) 1.577 moles
- (c) 0.010 moles
- (d) 0.00313 moles
- (e) none of these

- (19) How many aluminum atoms are there in 25 g of Al₂S₃?
 - (a) 1.0×10^{23}
 - (b) 2.0×10^{23}
 - (c) 4.5×10^{23}
 - (d) 4.0×10^{21}
 - (e) 6.0×10^{21}
- (20) What is the percentage of mass of oxygen in vanillin, $C_8H_8O_3$, which is used as a flavoring?
 - (a) 27.3%
 - (b) 31.6%
 - (c) 45.8%
 - (d) 63.2%
 - (e) 68.4%
- (21) A compound has an empirical formula of CH_2 and a molecular weight of 56.06 amu. Calculate the molecular formula of the compound:
 - (a) CH_2
 - (b) C_3H_6
 - (c) C_2H_4
 - (d) C_5H_{10}
 - (e) C_4H_8

Questions (22) and (23). Consider the following reaction:

$$4\mathrm{KO_2}(s) + 2\mathrm{H_2O}(l) \rightarrow 4\mathrm{KOH}(s) + 3\mathrm{O_2}(g)$$

The reaction vessel initially contains 0.25 mol KO₂ and 0.15 mol H₂O.

- (22) Which is the limiting reactant?
 - (a) KO_2
 - (b) H₂O
 - (c) KOH
 - (d) O_2
 - (e) cannot be determined from the given data

- (23) How many moles of O_2 can be produced?
 - (a) 0.22 mol
 - (b) 0.19 mol
 - (c) 0.25 mol
 - (d) 0.15 mol
 - (e) 0.39 mol

- What is the molarity of sodium hydroxide (NaOH, molar mass = 40.01 g) solution made by dissolving 57.2 g of NaOH in 250 mL of water?
 - (a) 0.1092 M
 - (b) 2.80 M
 - (c) 14.3 M
 - (d) 6.99 M
 - (e) 5.72 M

- When a 25.0 mL sample of HNO₃(aq) was titrated with 0.101 M NaOH(aq), the stoichiometric point was reached when 41.2 mL of the base had been added. What is the concentration of HNO₃(aq) in the sample?
 - (a) 0.166 M
 - (b) 0.00416 M
 - (c) 0.104 M
 - (d) 0.101 M
 - (e) 0.332 M
- (26) The balanced net ionic equation for the precipitation of CaCO₃ when aqueous solutions of Li₂CO₃ and CaCl₂ are mixed is
 - (a) $2 \text{ Li}^{+}(aq) + \text{CO}_{3}^{2-}(aq)$ -----> $\text{Li}_{2}\text{CO}_{3}(aq)$
 - (b) $2 \operatorname{Li}^{+}(aq) + 2 \operatorname{Cl}^{-}(aq) -----> 2 \operatorname{LiCl}(aq)$
 - (c) Li⁺(aq) + Cl⁻(aq) -----> LiCl(aq)
 - (d) $Ca^{2+}(aq) + CO_3^{2-}(aq) -----> CaCO_3(s)$
 - (e) $\text{Li}_2\text{CO}_3(\text{aq}) + \text{CaCl}_2(\text{aq}) \longrightarrow 2 \text{LiCl}(\text{aq}) + \text{CaCO}_3(\text{s})$

- What are the respective molar concentrations of Na⁺ and SO₄²⁻ afforded by dissolving 0.500 moles of Na₂SO₄ in water and diluting it to 1.33 L?
 - (a) 0.665 and 0.665
 - (b) 0.665 and 1.33
 - (c) 1.33 and 0.665
 - (d) 3.76 and 7.52
 - (e) 0.752 and 0.376

- EC) The combustion of 3.42 g of a compound known to contain only nitrogen and hydrogen was burned in oxygen. The result was the formation of 9.82 g of NO₂ and 3.85 g of water. Determine the empirical formula of this compound. SHOW ALL WORK
 - (a) NH
 - (b) NH₂
 - (c) N_2H
 - (d) NH₃
 - (e) N_2H_4

TABLE 4.1 Solubility Gu	idelines for C	Common Ionic Compounds in Water
Soluble Ionic Compound	3	Important Exceptions
Compounds containing	NO ₃ ⁻ C ₂ H ₃ O ₂ ⁻ Cl ⁻ Br ⁻ I ⁻ SO ₄ ²⁻	None None Compounds of Ag ⁺ , Hg ₂ ²⁺ , and Pb ²⁺ Compounds of Ag ⁺ , Hg ₂ ²⁺ , and Pb ²⁺ Compounds of Ag ⁺ , Hg ₂ ²⁺ , and Pb ²⁺ Compounds of Sr ²⁺ , Ba ²⁺ , Hg ₂ ²⁺ , and Pb ²⁺
Insoluble Ionic Compoun	ds	Important Exceptions
Compounds containing	S ²⁻ CO ₃ ²⁻	Compounds of NH ₄ ⁺ , the alkali metal cations, and Ca ²⁺ , Sr ²⁺ , and Ba ²⁺ Compounds of NH ₄ ⁺ and the alkali metal cations
	PO ₄ 3-	Compounds of NH ₄ ⁺ and the alkali metal cations
	OH-	Compounds of the alkali metal cations, and Ca ²⁺ , Sr ²⁺ , and Ba ²⁺

.

TABLE 4.5 A	ctivity Series of Metals in Aqueous Solution
Metal	Oxidation Reaction
Lith ium Potassium	$Li(s) \longrightarrow Li^{+}(aq) + e^{-}$
Barium	$K(s) \longrightarrow K^{+}(aq) + e^{-}$ $Ba(s) \longrightarrow Ba^{2+}(aq) + 2e^{-}$
Calcium	$Ca(s) \longrightarrow Ca^{2+}(aq) + 2e^{-}$
Sodium	$Na(s) \longrightarrow Na^{+}(aq) + e^{-}$
Magnesium Aluminum	$Mg(s) \longrightarrow Mg^{2+}(aq) + 2e^{-}$ $Al(s) \longrightarrow Al^{3+}(aq) + 3e^{-}$
Manganese	$Mn(s) \longrightarrow Mr^{2+}(aq) + 3e$ $Mn(s) \longrightarrow Mn^{2+}(aq) + 2e^{-}$
Zinc	$Zn(s) \longrightarrow Zn^{2+}(aq) + 2e^{-}$
Chromium	$Cr(s) \longrightarrow Cr^{3+}(aq) + 3e^{-}$
Iron Cobalt	$Fe(s) \longrightarrow Fe^{2+}(aq) + 2e^{-}$ $Co(s) \longrightarrow Co^{2+}(aq) + 2e^{-}$
Nickel	$Ni(s) \longrightarrow Ni^{2+}(aq) + 2e^{-}$
Tin	$Sn(s) \longrightarrow Sn^{2+}(aq) + 2e^{-}$
Lead Modrogen	$Pb(s) \longrightarrow Pb^{2+}(aq) + 2e^{-}$
Copper	$\begin{array}{ccc} H_{2}(g) & \longrightarrow & 2H^{+}(aq) & + & 2e^{-} \\ Cu(s) & \longrightarrow & Cu^{2+}(aq) & + & 2e^{-} \end{array}$
Silver	$Ag(s) \longrightarrow Ag^{+}(aq) + e^{-}$
Mercury	$Hg(l) \longrightarrow Hg^{2+}(aq) + 2e^{-}$
Platinum Gold	$\begin{array}{ccccc} \text{Pt}(s) & \longrightarrow & \text{Pt}^{2+}(aq) & + & 2e^{-} \\ \text{Au}(s) & \longrightarrow & \text{Au}^{3+}(aq) & + & 3e^{-} \end{array}$
COU	$Au(s) \longrightarrow Au^{-}(uq) + se$

..

Periodic Table of the Elements

2 He 4.0026	10 Ne 20.180	18 Ar 39.948	36 Kr 83.80	54 Xe 131.29	86 Rn (222)	
	9 FF 18.998	17 CI 35.453	35 Br 79.904	53 I 126.90	85 At (210)	
	8 0 15.999	16 S 32.056	34 Se 78.96	52 Te 127.60	84 Po (209)	
	7 N 14.007	15 P 30.974	33 As 74.922	51 Sb 121.76	83 Bi 208.98	
	6 C 12.011	14 Si 28.086	32 Ge 72.61	50 Sn 118.71	82 Pb 207.2	
	5 BB 10.81	13 A1 26.982	31 Ga 69.72	49 In 114.82	81 T1 204.38	
			30 Zn 65.39	48 Cd 112.41	80 Hg 200.59	
			29 Cu 63.546	47 Ag 107.87	79 Au 196.97	
		A	28 Ni 58.69	46 Pd 106.42	78 Pt 195.08	
		4 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /	27 Co 58.933	45 Rh 102.91	77 Ir 192.22	[109] Mt (268)
			26 Fe 55.847	44 Ru 101.07	76 Os 190.2	[108] Hs (265)
			25 Mn 54.938	43 Tc (98)	75 Re 186.21	[107] Bh (262)
			24 Cr 51.996	42 Mo 95.94	74 W 183.85	106 Sg (263)
			23 V 50.942	41 Nb 92.906	73 Ta 180.95	105 Db (262)
			22 Ti 47.88	40 Zr 91.224	72 Hf 178.49	104 Rf (261)
			21 Sc 44.955	39 Y 88.906	57 La 138.91	89 Ac 227.03
	4 Be 9.012	12 Mg 24.31	20 Ca 40.078	38 Sr 87.62	56 Ba 137.33	88 Ra 226.03
II II.0079	3. Li 6.941	. 11 Na 22.990	19 K 39.098	37 Rb 85.468	55 Cs 132.91	87 Fr (223)

Lanthanide Series	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	H0	Er	Tm	Yb	Lu
	140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.96
Actinide Series	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	ES	Fin	Md	No	Lr
	232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)