
Chemistry 106: General Chemistry

Syracuse University Project Advance Exam #3, Fall 2014

Name	Period Date
(1) Which	of the following statements about resonance is/are incorrect?
I. Wh bon	en resonance exists, a single Lewis structure does not adequately represent the ding.
II. Res III. Res	onance describes the vibration of nuclei within the molecule. onance describes a bonding situation that is in between(a blend) the tributing structures.
a)	I
b)	II
c)	III
d)	I and III
e)	none are incorrect
(2) A bond	in which an electron is unequally shared by two atoms is
a)	coordinate covalent
b)	dipolar
c)	polar covalent
d)	nonpolar covalent
e)	ionic
(3) In the L central a	ewis structure of ClF ₃ , the number of lone pairs of electrons around the atom is
a)	0
b)	1
c)	2
d)	3
e)	4

- (4) The molecular geometry of SF₂ is
 - a) linear
 - b) bent (or angular)
 - c) trigonal planar
 - d) trigonal pyramidal
 - e) tetrahedral
- (5) A double bond is
 - a) stronger and shorter than a triple bond
 - b) weaker and longer than a single bond
 - c) weaker and shorter than a triple bond
 - d) stronger and longer than a single bond
 - e) stronger and shorter than a single bond
- (6) Which atom would be expected to be the most electronegative?
 - a) B
 - b) Na
 - c) N
 - d) Cs
 - e) Al
- (7) For the Lewis structure, the formal charges on N, N, and O, respectively (from left to right in the structure) are

- a) -1, +2, -1
- b) -1, +1, 0
- c) 0, 0, 0
- d) 0, +1, -1
- e) -2, +2, 0
- (8) Which pair of elements would form the most ionic bond?
 - a) H and O
 - b) O and F
 - c) Cs and S
 - d) Li and S
 - e) Al and N

- (9) The bonding in water is best characterized as
 - a) hydrogen bonding
 - b) ionic
 - c) coordinate covalent
 - d) polar covalent
 - e) nonpolar covalent
- (10) Which of the following does not describe a covalent bond?
 - a) sharing of valence electrons.
 - b) electrons are attracted simultaneously to both positive nuclei forming the bond.
 - c) involves overlapping orbitals of the atoms that compose it.
 - d) sharing of core electrons.
 - e) all describe covalent bonds.
- (11) In the ICl₄ ion, the electron pairs are arranged around the central iodine in the shape of
 - a) an octahedron
 - b) a tetrahedron
 - c) a trigonal bipyramid
 - d) a trigonal pyramid
 - e) a square plane
- (12) A π (pi) bond is the result of:
 - a) overlap of twp sp² hybrid orbitals
 - b) overlap of two p orbitals along their axes
 - c) sidewise overlap of two parallel p orbitals
 - d) overlap of two s orbitals
 - e) overlap of an s and a p orbital
- (13) A bond in which an electron pair is unequally shared by two atoms is
 - a) ionic.
 - b) coordinate covalent.
 - c) nonpolar covalent.
 - d) polar covalent.
 - e) dipolar.

(14) Which of the following molecules has/have sp³ hybrid orbitals on the central atoms(s)? I. CH₄ II. BF₃ III. H₂O IV. H₂C=CH₂ V. NH₃ a) II and IV I and III b) c) I, II and V d) I, II, and III e) I, III, and V (15) The approximate adjacent F-Xe-F bond angle in XeF₄ is a) 90° b) 109° c) 120° d) 180° e) 104.5° (16) The TOTAL bonding in acetylene (C₂H₂) consists of a) one σ and one π bond b) two σ and one π bond c) two σ and two π bond d) three σ and two π bond e) three σ and no π bond (17) Using molecular Orbital Theory, determine the bond order of the O₂ molecule a) 0 b) 1 c) 1.5 d) 2

e) 2.5

(18)	Generally, a molecule in which the central atom is sp ³ d ² hybridized will have electron-pair geometry	
	 a) octahedral b) linear c) trigonal planar d) trigonal bipyramidal e) tetrahedral 	
(19)	A molecular orbital that is symmetrical for rotation about the internuclear axis is called	
	 a) a bonding orbital b) an anti-bonding orbital c) a pi orbital d) a sigma orbital e) a nonbonding orbital 	
(20)	Molecular Orbital Theory describes the bonding in H ₂ as having	
	 a) both the σ_{1s} and σ*_{1s} orbitals filled b) the σ_{1s} orbital filled and σ*_{1s} orbital empty c) the σ_{1s} orbital filled and σ*_{1s} orbital half-filled d) the σ_{1s} orbital half-filled and σ*_{1s} orbital filled e) the σ_{1s} orbital empty and σ*_{1s} orbital filled 	
(21)	A typical triple bond consists of	
	 a) three sigma bonds b) three pi bonds c) one sigma and two pi bonds d) two sigma and one pi bond e) none of the above 	
(22)	Suppose 3.15 L of neon at 21° C and $P = 0.951$ atm is compressed to 1.292 atm, with the temperature held contant. The new volume is	
	a) 2.32 L b) 3.00 L c) 3.15 L d) 4.10 L e) 4.44 L	

- (23) Which response contains all the characteristics listed that should apply to PF₃?
 - 1. trigonal planar
 - 2. one unshared pair of electrons on P
 - 3. sp³-hybridized phosphorus atom
 - 4. polar molecule
 - 5. nonpolar molecule
 - a) 1, 3, and 5
 - b) 2, 3, and 4
 - c) 1, 2, and 4
 - d) 2, 3, and 5
 - e) 1, 2, and 5
- (24) A tank of volume 40 L contains a gas at 1.0 atm pressure, and a temperature of 20°C. Another tank, of volume 60 L, contains the same gas, also at 20°C, but at 2.0 atm pressure. The tanks are connected so gas can flow between them, with the temperature maintained at 20°C. At equilibrium, the pressure is the same everywhere in the total volume of 100 L. What is the final pressure?
 - a) 1.4 atm
 - b) 1.5 atm
 - c) 1.6 atm
 - d) 2.0 atm
 - e) 3.0 atm
- (25) Which of the following is/are characteristic of gases?
 - a) High compressibility
 - b) Relatively large distance between molecules.
 - c) Formation of homogeneous mixtures regardless of the natures of non-reacting gas components.
 - d) All of the above.
 - e) None of the above.
- (26) The average kinetic energy of molecules of a gas depends on
 - a) the temperature of the gas.
 - b) the total mass of the molecules of the gas.
 - c) the density of the gas.
 - d) all of these.
 - e) none of these.

- (27) A sample of oxygen gas occupies a volume of 900 mL at a pressure of 100 mmHg. What is the pressure of the gas if the volume is reduced to 300 mL and the temperature is doubled?
 - a) 66.7 mmHg
 - b) 33.3 mmHg
 - c) 300 mmHg
 - d) 150 mmHg
 - e) 600 mmHg
- (28) How many moles of gas occupy 60.82 L at 31°C and 367 mm Hg?
 - a) 1.18
 - b) 0.850
 - c) 894
 - d) 11.6
 - e) 0.120
- (29) Automobile air bags use the decomposition of sodium azide as their source of gas for rapid inflation:

$$2\text{NaN}_3(s) \rightarrow 3\text{ Mg(OH)}_2(aq) + 2\text{ NH}_3(g)$$

How many grams of NaN3 are required to provide 40.0 L of N2 at 25°C and 763 mm Hg?

- a) 1.64
- b) 1.09
- c) 160
- d) 71.1
- e) 107
- (30) What mass of nitrogen dioxide would be contained in a 4.32 L vessel at 48 $^{\circ}$ C and 1062 torr?
 - a) $5.35 \times 10^4 \text{ g}$
 - b) 53.5 g
 - c) 10.5 g
 - d) 105.0 g
 - e) none of the above

- (31) A flask contains a mixture of two gases, A and B, at a total pressure of 2.6 atm. There are 2.0 moles of gas A and 5.0 moles gas B in the flask. What is the partial pressure (in atm) of gas A?
 - a) 9.1
 - b) 6.5
 - c) 1.04
 - d) 0.74
 - e) 2.6
- (32) What is the molecular weight of a gas which has a density of 5.75 g/L at STP?
 - a) 3.90
 - b) 129
 - c) 141
 - d) 578
 - e) 65.5
- (33) When a gas mixture effuses through a pinhole, the lighter components effuse faster because
- a) the heavier molecules tend to stay in the bottom of the container, away from the pinhole.
- b) the lighter molecules move more rapidly.
- c) the lighter molecules are also smaller and fit through the pinhole more easily.
- d) the heavier molecules are more likely to be aggregated.
- e) the lighter molecules have more kinetic energy.
- (34) An empty 2.0 L soda bottle is tightly capped with 2g of N₂ inside. If the bottle is placed in water at 95°C, what is the pressure in the bottle?
 - a) 520 mmHg
 - b) 780 mmHg
 - c) 820 mmHg
 - d) 930 mmHg
 - e) 2800 mmHg

- EC. A gas from a certain volcano was a mixture of CO₂ (mole fraction 0.650), H₂ (mole fraction 0.250), HCl (mole fraction 0.054), HF (mole fraction 0.028), and "other gases." The total pressure is 760 mm Hg. What is the *sum of the partial pressures* of the "other gases?"
 - a) 13.7 mm Hg
 - b) 18.0 mm Hg
 - c) 21.3 mm Hg
 - d) 137 mm Hg
 - e) 152 mm Hg