1. Given the reaction for the corrosion of aluminum:

$$4 \text{ Al} + 3 \text{ O}_2 \rightarrow 2 \text{ Al}_2 \text{O}_3$$

Which half-reaction correctly represents the oxidation that occurs?

- 1) $Al + 3e^- \rightarrow Al^{3+}$
- 2) $Al \rightarrow Al^{3+} + 3e^{-}$
- 3) $O_2 + 4e^- \rightarrow 2 O^{2-}$
- 4) $O_2 \rightarrow 2 O^{2-} + 4e^{-}$
- 2. Given the reaction:

$$Cu(s) + 4HNO_3(aq) \rightarrow$$

$$Cu(NO_3)_2(aq) + 2NO_2(g) + 2H_2O(g)$$

e)

As the reaction occurs, what happens to copper?

- 1) It undergoes reduction and its oxidation number decreases.
- 2) It undergoes reduction and its oxidation number increases.
- It undergoes oxidation and its oxidation number decreases
- 4) It undergoes oxidation and its oxidation, number increases.
- 3. Given the reaction:

$$2NaCl + 2H_2O \rightarrow 2NaOH + H_2 + Cl_2$$

Which electronic equation correctly represents the oxidation that occurs in this reaction?

- 1) $2Na^0 \rightarrow 2Na^+ + 2e^-$
- 2) $2Cl^{-} \rightarrow Cl_{2}^{0} + 2e^{-}$
- 3) $2H^+ + 2e^- \rightarrow H_2^0$
- 4) $O_2^0 + 2e^- \rightarrow 2O^{-2}$
- 4. Given the reaction:

$$Mg + CuSO_4 \rightarrow MgSO_4 + Cu$$

Which equation represents the oxidation that takes place?

- 1) $Mg^{2+} + 2e^{-} \rightarrow Mg$
- 3) $Cu^{2+} + 2e^{-} \rightarrow Cu$
- 2) $Mg \rightarrow Mg^{2+} + 2e^{-}$

4)
$$Cu \rightarrow Cu^{2+} + 2e^{-}$$

5. Given the reaction:

$$2\text{Na(s)} + 2\text{H}_2\text{O}(\ell) \rightarrow 2\text{NaOH(aq)} + \text{H}_2(g)$$

What substance undergoes oxidation?

- 1) Na
- 2) NaOH
- 3) H₂
- 4) H₂O

6. Given the reaction:

$$Ca(s) + Cu_{2+}(aq) \rightarrow Ca_{2+}(aq) + Cu(s)$$

What is the correct reduction half-reaction?

- 1) $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$
- 2) $Cu^{2+}(aq) \rightarrow Cu(s) + 2e^{-}$
- 3) $Cu(s) + 2e^- \rightarrow Cu^{2+}(aq)$
- 4) $Cu(s) \rightarrow Cu^{2+}(aq) + 2e^{-}$
- 7. Given the reaction:

$$Mg(s) + Cl_2(g) \rightarrow MgCl_2(s)$$

Which half-reaction correctly represents the reduction that occurs?

- 1) $Mg(s) + 2e^- \rightarrow Mg^{2+}$
- 2) $Cl_2(g) + 2e^- \rightarrow 2Cl^-$
- 3) $Mg^{2+} \rightarrow Mg(s) + 2e^{-}$
- 4) $2Cl^- \rightarrow Cl_2 + 2e^-$
- 8. Which half-reaction correctly represents reduction?
 - 1) $Ag \rightarrow Ag^+ + e^-$
 - 2) $F_2 \rightarrow 2F^- + 2e^-$
 - 3) $Au^{3+} + 3e^{-} \rightarrow Au$
 - 4) $Fe^{2+} + e^{-} \rightarrow Fe^{3+}$
- 9. Given the reaction:

$$Zn(s) + 2HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g)$$

Which equation represents the correct oxidation half-reaction?

- 1) $Zn(s) \rightarrow Zn^{2+} + 2e^{-}$
- 2) $2H + 2e^- \rightarrow H_2(g)$
- 3) $\operatorname{Zn}^{2+} + 2e \rightarrow \operatorname{Zn}(s)$
- 4) $2Cl^- \rightarrow Cl_2(g) + 2e^-$
- 10. Given the reaction:

$$3\text{Sn}^{4+}(\text{aq}) + 2\text{Cr}(\text{s}) \rightarrow 3\text{Sn}^{2+}(\text{aq}) + 2\text{Cr}^{3+}(\text{aq})$$

Which half-reaction correctly represents the reduction that occurs?

- 1) $\operatorname{Sn}^{4+}(aq) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(aq)$
- 2) $\operatorname{Sn}^{2+}(aq) \to \operatorname{Sn}^{4+}(aq) + 2e^{-}$
- 3) $Cr(s) \rightarrow Cr^{3+}(aq) + 3e^{-}$
- 4) $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$
- 11. In the reaction

$$Mg + Cl_2 \rightarrow MgCl_2$$
,

the correct half-reaction for the oxidation that occurs is

- 1) Mg + 2e⁻ \rightarrow Mg²⁺
- 2) $Cl_2 + 2e^- \rightarrow 2Cl^-$
- 3) Mg \rightarrow Mg²⁺ + 2e⁻
- 4) $Cl_2 \rightarrow 2Cl^- + 2e^-$

$$2NiOOH + Cd + 2H_2O \xrightarrow{discharge} 2Ni(OH)_2 + Cd(OH)_2$$

During the discharge of the battery, Ni³⁺ ions are

- 1) reduced, and cadmium metal is reduced
- 2) reduced, and cadmium metal is oxidized

- 3) oxidized, and cadmium metal is reduced
- 4) oxidized, and cadmium metal is oxidized

Base your answers to questions 13 and 14 on the reaction below

$$2Cr(s) + 3Cu^{2+}(aq) \rightarrow 2Cr^{3+}(aq) + 3Cu(s)$$

13. The electronic equation that represents the oxidation reaction that occurs is

1)
$$2Cr^0 - 6e^- \rightarrow 2Cr^{3+}$$
 3) $2Cr^{3+} - 6e^- \rightarrow 2Cr^0$

3)
$$2Cr^{3+} - 6e^{-} \rightarrow 2Cr^{0}$$

2)
$$2Cr^{0} + 6e^{-} \rightarrow 2Cr^{3+}$$
 4) $2Cr^{3+} + 6e^{-} \rightarrow 2Cr^{0}$

4)
$$2Cr^{3+} + 6e^{-} \rightarrow 2Cr^{-}$$

14. If 3 moles of Cu react according to the equation above, the total number of moles of electrons transferred will be

1) 1

3) 3

2) 2

4) 6

15. Given the equation:

$$C(s) + H_2O(g) \rightarrow CO(g) + H_2(g)$$

Which species undergoes reduction?

- 1) C(s)
- 2) H⁺
- 3) C^{2+}
- 4) $H_2(g)$

16. Given the reaction:

$$Fe(s) + Cu^{2+}(aq) \rightarrow Fe^{2+}(aq) + Cu(s)$$

Which half-reaction correctly shows the oxidation that occurs?

- 1) $Fe(s) \rightarrow Fe^{2+}(aq) + 2e^{-}$
- 2) $Fe(s) + 2e^{-} \rightarrow Fe^{2+}(aq)$
- 3) $Cu^{2+}(aq) \rightarrow Cu(s) + 2e^{-}$
- 4) $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$

17. Given the reaction:

$$Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$$

Which half-cell reaction represents the reduction that occurs?

- 1) $Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$
- 2) $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$
- 3) $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$
- 4) $Cu(s) \rightarrow Cu^{2+}(aq) + 2e^{-}$

18. Given the equation:

$$2 \text{ Al} + 3 \text{ Cu}^{2+} \rightarrow 2 \text{ Al}^{3+} + 3 \text{ Cu}$$

The reduction half-reaction is

- 1) $Al \rightarrow Al^{3+} + 3e^{-}$
- 3) Al + 3e⁻ \rightarrow Al³⁺
- 2) $Cu^{2+} + 2e^{-} \rightarrow Cu$
- 4) $Cu^{2+} \rightarrow Cu + 2e^{-}$
- 19. Given the reaction:

$$2Al^{0}(s) + 3Ni^{2+}(aq) \rightarrow 2Al^{3+}(aq) + 3Ni^{0}(s)$$

What is the total number of moles of electrons lost by 2 moles of $Al^0(s)$?

1) 6

3) 3

2) 2

4) 8

20. Given the cell reaction:

$$\operatorname{Sn}(s) + \operatorname{Pb}^{2+}(\operatorname{aq}) \to \operatorname{Sn}^{2+}(\operatorname{aq}) + \operatorname{Pb}(s)$$

The reduction half-reaction for this cell is

- 1) $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ 3) $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$
- 2) $Pb(s) \rightarrow Pb^{2+}(aq) + 2e^{-} 4$ $Sn(s) \rightarrow Sn^{2+}(aq) + 2e^{-}$
- 21. Given the equation:

 $3Cu + 8HNO_3 \rightarrow 3Cu(NO_3)_2 + 2NO + 4H_2O$

What is the total number of moles of electrons lost by the copper as it completely reacts with 8 moles of nitric acid?

1) 1

3) 8

2) 6

4) 4

22. When the equation
$$Pb^{2+} + Au^{3+} \rightarrow Pb^{4+} + Au$$

is correctly balanced using the smallest whole number coefficients, the coefficient of the Pb²⁺ will be

1) 1

2) 2

4) 4

23. Given the unbalanced equation which represents aluminum metal reacting with an acid:

$$Al + H^+ \rightarrow Al^{3+} + H_2$$

What is the total number of moles of electrons lost by 1 mole of aluminum?

1) 6

3) 3

2) 2

4) 13

24. The net ionic equation

$$Fe(s) + Pb^{2+}(aq) \rightarrow Fe^{2+}(aq) + Pb(s)$$

- illustrates conservation of 1) mass and charge
- 3) mass but not charge
- 2) charge but not mass
- 4) neither mass nor charge

25.	Given the reaction: $2Cr(s) + _Sn^{2+}(aq) \rightarrow 2Cr^{3+}(aq) + _Sn(s)$	34.	Given the reaction: $Cl_2(g) + Fe^{2+}(aq) \rightarrow Fe^{3+}(aq) + Cl^-(aq)$
	When the reaction is correctly balanced using the smallest whole numbers, the coefficient of Sn ²⁺ (aq) is 1) 1 3) 3		When the equation is correctly balanced using <i>smallest</i> whole numbers, the coefficient of Cl ⁻ (aq) will be
26.	2) 2 4) 4 Given the balanced equation:		1) 1 3) 6 2) 2 4) 7
	$3Fe^{3+}(aq) + Al(s) \xrightarrow{1} 3Fe^{2+}(aq) + Al^{3+}(aq)$ What is the total number of moles of electrons lost by 2 moles of Al(s)?	35.	What is the coefficient of H ⁺ when the redox equation below is correctly balanced with whole number coefficients?
	1) 1 mole 3) 3 moles 2) 6 moles 4) 9 moles		$Cr_2O_7^{2-} + 6I^- + _H^+ \rightarrow Cr^{3+} + H_2O + 3I_2$ 1) 14 3) 7
27.	Which redox equation is correctly balanced? 1) $Cr(s) + 3Fe^{2+}(aq) \rightarrow 2Cr^{3+}(aq) + Fe(s)$	36.	2) 2 4) 12 Given the equation:
	2) $Pb(s) + 2H^{+}(aq) \rightarrow Pb^{2+}(aq) + H_{2}(g)$ 3) $Pb(s) + Ag^{+}(aq) \rightarrow Pb^{2+}(aq) + Ag(s)$		_KMnO ₄ + _HCl \rightarrow _KCl + _MnCl ₂ + _Cl ₂ + _H ₂ O What is the coefficient of H ₂ O when the equation is
28.	4) $\operatorname{Zn}(s) + \operatorname{Br}_2(aq) \to \operatorname{Zn}^{2+}(aq) + \operatorname{Br}^-(aq)$ Given the reaction:		correctly balanced? 1) 8 3) 16
	$_{\rm Mg}$ + $_{\rm Cr}$ ³⁺ → $_{\rm Mg}$ ²⁺ + $_{\rm Cr}$ When the equation is correctly balanced using smallest whole numbers, the sum of the coefficients will be	37	2) 2 4) 4 When the equation
	1) 10 3) 5	57.	$_Al + 3NO_3^- + _H^+ \rightarrow _Al^{3+} + 3H_2O + 3NO_2$ is completely balanced, the coefficient of Al will be
29.	2) 7 4) 4 When the redox reaction below is completely balanced using the smallest whole numbers what is the coefficient		1) 1 3) 3 2) 2 4) 4
	of NO? $Ag + HNO_3 \rightarrow AgNO_3 + NO + 2H_2O$	38.	Given the reaction: $Cr^{3+} + 10OH^{-} + ClO_{3}^{-} \rightarrow CrO_{4}^{2-} + Cl^{-} + 5H_{2}O$
	1) 1 3) 3 2) 2 4) 4		When the reaction is completely balanced using the smallest whole numbers, the coefficient of Cr ³⁺ will be
30.	Given the reaction: $_{-}^{+}Hg^{2^{+}} + _{-}^{-}Ag \rightarrow _{-}^{-}Hg + _{-}^{-}Ag^{+}$		1) 1 3) 3 2) 2 4) 4
	When the equation is completely balanced using the smallest whole number coefficients, the coefficient of Hg will be	39.	Given the unbalanced equation: $H_2S + HNO_3 \rightarrow S + NO + H_2O$ What is the coefficient of the H_2S when the equation is correctly balanced using whole numbers?
	1) 1 3) 3 2) 2 4) 4		1) 5 3) 3
31.	Given the unbalanced equation: $\underline{Br_2} + \underline{Sn} \rightarrow \underline{Br^-} + \underline{Sn^{2+}}$	40.	2) 2 4) 4 Given the reaction:
	When the equation is correctly balanced using the smallest whole-number coefficients, the coefficient of Bris		_HNO ₃ + _H ₃ PO ₃ \rightarrow _NO + _H ₃ PO ₄ + _H ₂ O When the reaction is completely balanced using the smallest whole numbers, the coefficient of H ₃ PO ₄ will be
	1) 1 3) 3 2) 2 4) 4		1) 1 3) 3 2) 2 4) 4
32.	Given the unbalanced equation: $Ag_2S + 8HNO_3 \rightarrow$	41.	Given the unbalanced equation: $NO_3^- + 4H^+ + Pb \rightarrow Pb^{2+} + NO_2 + 2H_2O$ What is the coefficient of NO_2 when the equation is
	$\underline{\hspace{0.1cm}}$ AgNO ₃ + 2NO + $\underline{\hspace{0.1cm}}$ S + $\underline{\hspace{0.1cm}}$ H ₂ O What is the coefficient of Ag ₂ S when the equation is completely balanced using the smallest whole numbers?		what is the coefficient of NO_2 when the equation is correctly balanced? 1) 1 3) 3
	1) 6 3) 3 2) 2 4) 4	42.	2) 2 4) 4 What is the coefficient of Fe^{2+} when the redox equation
33.	When the redox equation $ Cr^{3+}(aq) + 3Mn(s) \rightarrow Mn^{2+}(aq) + Cr(s) $		below is correctly balanced? $Fe^{2+} + NO_3^- + H^+ \rightarrow Fe^{3+} + NO + 2H_2O$
	is completely balanced, the coefficient of Cr ³⁺ (aq) will be 1) 1 3) 3		1) 1 2) 2 3) 3 4) 4
	2) 2 4) 4		

43.	Which redox equation is correctly balanced? 1) $Al + 2H^+ \rightarrow Al^{3+} + H_2$ 2) $Zn + 2H^+ \rightarrow Zn^{2+} + H_2$ 3) $Cr + Ag^+ \rightarrow Cr^{3+} + Ag$	51.	Given the balanced equation: $2Al(s) + 6H^{+}(aq) \rightarrow 2Al^{3+}(aq)$ When 2 moles of Al(s) complete total number of moles of electron to H ⁺ (aq)?
44	4) $Cu + Ag^+ \rightarrow Cu^{2+} + Ag$ When the equation		1) 5 3)
77.	_Cu + _HNO ₃ \rightarrow _Cu(NO ₃) ₂ + 2NO + _H ₂ O is completely balanced using whole numbers, the coefficient of the HNO ₃ will be	52.	2) 6 4) Given the unbalanced equation: $Ca^{0} + AI^{+3} \rightarrow Ca^{+2} + A$ When the equation is completely
	1) 8 3) 6 2) 2 4) 4		smallest whole number coefficient of Ca ⁰ ?
45.	Which redox reaction is balanced? 1) $Fe^{3+} + 2Ni \rightarrow Fe^{2+} + 2Ni^{2+}$		1) 1 3)
	1) $Fe^{x} + 2Ni \rightarrow Fe^{x} + 2Ni$ 2) $2Fe^{3+} + Ni \rightarrow 2Fe^{2+} + Ni^{2+}$		2) 2 4)
	3) $Fe^{3+} + Ni \rightarrow Fe^{2+} + Ni^{2+}$ 4) $3Fe^{3+} + 2Ni \rightarrow 3Fe^{2+} + 2Ni^{2+}$	53.	Given the equation: $2Al(s) + 3Cu^{2+}(aq) \rightarrow 2Al^{3+}(aq)$
46.	Given the reaction: $G_{1}^{(2)} = 2A_{1}^{(2)} + 2A_{2}^{(2)} = 2A_{1}^{(2)} = $		The total number of moles of ele $2Al(s)$ to $Cu^{2+}(aq)$ is
	$Cu(s) + 2Ag^{+}(aq) \rightarrow Cu^{2+}(aq) + 2Ag(s)$ Which statement correctly indicates the electron change		1) 9 3)
	that occurs?		2) 2 4)
	1) One mole of Cu(s) loses a total of 2 moles of electrons.	54.	Given the reaction: $Cr + Fe^{2+} \rightarrow Cr^{3+}$
	2) One mole of Cu(s) gains a total of 1 mole of electrons.		When the reaction is completel smallest whole number coefficients
	3) Two moles of Ag ⁺ (aq) loses a total of 2 moles of electrons.		coefficients is 1) 10 3)
	4) Two moles of Ag ⁺ (aq) gains a total of 1 mole of		1) 10 3) 2) 6 4)
47.	electrons. Given the unbalanced equation:	55.	Given the unbalanced equation: $Cr^0 + Sn^{2+} \rightarrow Cr^{3+} + Sn$
	$\underline{\hspace{0.5cm}}Mg(s) + \underline{\hspace{0.5cm}}Fe^{3+} \rightarrow \underline{\hspace{0.5cm}}Mg^{2+} + \underline{\hspace{0.5cm}}Fe(s)$ When the equation is completely balanced using smallest whole numbers, the coefficient of Mg(s) will be		What is the coefficient in front of equation is balanced using small coefficients?
	1) 1 3) 3		1) 1 3)
48.	2) 2 4) 4 Given the unbalanced equation: $Fe + Ag^{+} \rightarrow Ag + Fe^{3+}$	56.	2) 2 4) Given the equation:
	When the equation is correctly balanced using smallest whole numbers, the coefficient of Ag^+ is		$Ca^{2+}(aq) + PO_4^{3-}(aq)$ → When the equation is correctly be total charge of the reactants is
	1) 5 3) 3		1) 0 3)
40	2) 2 4) 4		2) +2 4)
49.	Given the above unbalanced equation: $2MnO_4^- + 16H^+ + C\Gamma \rightarrow 2Mn^{2+} + 8H_2O + Cl_2$	57.	Given the unbalanced equation: $MnO_2 + HCl \rightarrow MnCl_2 +$
	What is the coefficient in front of the Cl^- when the		When the equation is correctly l
	equation is completely balanced using whole numbers?		whole number coefficients, the
	1) 1 3) 5	1	1) 1 3)

10

3) 3

4) 12

2) 2

1) 6

2) 2

50. Given the balanced reaction:

 $2Al(s) + 6H^{+}(aq) \rightarrow 2Al^{3+}(aq) + 3H_{2}(g)$

when 2 moles of Al(s) is completely reacted?

What is the total number of electrons gained by H⁺(aq)

 $2Al(s) + 6H^{+}(aq) \rightarrow 2Al^{3+}(aq) + 3H_{2}(g)$

 $Ca^0 + Al^{+3} \rightarrow Ca^{+2} + Al^0$

When 2 moles of Al(s) completely reacts, what is the total number of moles of electrons transferred from Al(s)

When the equation is completely balanced with the smallest whole number coefficients, what is the

 $2Al(s) + 3Cu^{2+}(aq) \rightarrow 2Al^{3+}(aq) + 3Cu(s)$ The total number of moles of electrons transferred from

3) 3

3) 3

4) 4

3) 3

4) 6

correctly balanced?

1) 1

3) 5

2) 2

4) 8

Reference Tables

Table N Selected Radiolsotypes

Nuclide	Half-Life	Decay Mode	Nuclide Name
39Au	2.694	js-	791 likg
:40	57.30 v	8-	earlson-14
"Ca	175 nes	β.	culcinm-37
on(Co	5.26 y	B	cobalt-60
187Cs	30.21 •	β-	tvsum-137
ssp.	8.51 min	ķ.	iron-63
ssop _r	27.5 s	а	francium-220
20	12.26 y	g-	Europhyil
1334	8.074	β-	iodine-13J
37K	123 5	в.	розамин-37
42K	12.4 h	B-	potassium-42
S5Kr	10.76 y	β-	knyton-85
16N	7.2 s	β-	sitrogen-16
19Nr	17.2 s	ß*	mvn-19
32P	14.3 d	В-	phosphorus-32
299 Per	$2.44 \times 10^4 \text{ y}$	u	photonium-239
206 Ra	1600 y	u	talium-226
222 Hzs	3.82 il	a	radon-222
∞ _{Sr}	881 y	B-	strontium-90
Ap.Ic	$2.13 \times 10^5 \text{ y}$	β-	technetium-99
235Th	1.4×10^{10} y	a	thorium-232
223°.	1.62 × 10 ⁵ y	cı	turanium-233
215U	7.1 × 10° y	a	entition-235
396	$4.51 \times 10^9 \text{ y}$	44	tenstions-238

nix = milliseconds; x = seconds; min = minute h = bours; d = days; y = years

Answer Key

- 1. ____2
- 2. ___4
- 3. 2
- 4. ____2
- 5. ___1
- 6. ___1___
- 7. ____2
- 8. ___3___
- 9. 1
- 10. ___1___
- 11. ___3___
- 12. ____2
- 13. ___1
- 14. ___4
- 15. ____2
- 16. ___1___
- 17. ____3____
- 18. ____2
- 19. ___1___
- 20. ___1___
- 21. ____2
- 22. ___3
- 23. ___3___
- 24. ___1___
- 25. ___3___
- 26. ____2___
- 27. ____2
- 28. ___1___
- 29. ___1___

- 30. ___1___
- 31. ____2
- 32. ___3___
- 33. ____2
- 34. ____2___
- 35. ___1
- 36. ___1___
- 37. ___1___
- 38. 2
- 39. ___3
- 40. ___3___
- 41. ____2
- 42. ___3___
- 43. 2
- 44. ___1___
- 45. ____2
- 46. ___1___
- 47. ___3___
- 48. ____3____
- 49. 3
- 50. ___1___
- 51. 2
- 52. ___3___
- 53. 4
- 54. ___1___
- 55. ____2
- 56. ___1___
- 57. 4
- 58. 4

59. 3